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Motivation: RL Generalization 
➢ Training Deep RL algorithms takes millions of 

timesteps per task

➢ We want to use one policy to solve multiple tasks

➢ We also want to be able to adapt to slight changes 

in the environment

○ Key special-case in robotics: sim2real 

transfer [1]

○ Different degrees of the same core problem
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Motivation: Multi-task RL and Generalization
➢ “Generalization” initially focused on applying one algorithm to multiple tasks independently

○ E.g, 1 set of DQN hyperparameters, 57 Atari games [2] [3]

➢ Atari games are too distinct for positive transfer→ instead try different levels of the same game [4]
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➢ Supervised learning sometimes needs millions of images or text fragments

➢ How many different “levels”/tasks does RL need to generalize?

○ We can find out by generating near-infinite variations of the same environment [5] [6]

Motivation: Multi-task RL and Generalization
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➢ Supervised learning sometimes needs millions of images or text fragments

➢ How many different “levels”/tasks does RL need to generalize?

○ We can find out by generating near-infinite variations of the same environment

○ Robotics examples: manipulation environments with random object locations [7]

Motivation: Multi-task RL and Generalization
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➢ Procedural generation for diverse task collections is a common theme [8]

○ We’ve seen one example already with dexterous hand sim2real [9]

○ Especially for visual generalization, where graphics are easily randomized [10] [11] [12]

Motivation: Multi-task RL and Generalization



CS391R: Robot Learning (Fall 2022) 7

➢ Examples so far have leaned towards easily visualized differences

➢ But variations in reward functions, goals, and dynamics are also studied [13] 

○ Especially reward function changes in classic gym envs [14]

Motivation: Multi-task RL and Generalization
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The Spectrum of RL Generalization

Completely 
Distinct Tasks

Shared Structure With 
Varied Elements

Minor Variations in 
Dynamics
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Meta-World
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Meta-World
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Meta-World

The set of 50 distinct manipulation tasks creates non-parametric variation
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Meta-World
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Meta-World
➢ First step is to show every task is solvable individually

○ Requires dense (hand-engineered) reward 
function

○ Reward scale varies by task so we compare 
based on binary “success” metric

➢ Single-Task SAC and PPO 

○ Train on parametric variation with goal provided

○ Can succeed on at least 50% of goals per task

■ Slightly inconsistent vocab here
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Multi-Task vs. Meta-Learning

Multi-Task Learning: tell the policy which task we are solving
➢ one-hot encoding of non-parametric task ID

➢ array of parametric goal information

➢ connections to goal-conditioned RL [15]



CS391R: Robot Learning (Fall 2022) 16

Multi-Task vs. Meta-Learning

Meta-Learning: the policy needs to discover which task we are solving

Two main categories of approaches:

1. Optimization-based methods quickly finetune on the current task with gradient 
updates
a. MAML [16] and its many variants 

2. Context-based methods infer the current task by remembering all the past 
attempts
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Context-Based Meta-Learning
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Context-Based Meta-Learning
➢ Simplest and earliest implementations are RL^2 [17] and L2RL [18]

○ On-policy policy gradient RNNs that roll through episode boundaries

➢ More complex variants include PEARL [19] and variBAD [20]

○ Better ways to drive exploration and model how uncertain we are of the current task

○ For more formal reading: check out connections between Meta-Learning and CMDPs / 
BAMDPs [21][22]

➢ In general, there is less activity here than gradient-based MAML variants
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Meta-World Benchmarks: 
Multi-Task

Multi-Task (MT): MT1, MT10, MT50

Use standard RL algorithms to train 

policies that can see the one-hot task ID 

and goal array

Tasks are sampled from 1 manipulation 

task (MT1), or 10 (MT10), etc.
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Meta-World Benchmarks: 
Meta-Learning
Meta-Learning (ML): ML1, ML10, ML45

Use meta-RL algorithms to train policies that 

cannot see the one-hot task ID or goal array

Tasks are sampled from 1 manipulation task 

(ML1), or 10 (ML10), or 45 (ML45)

5 manipulation tasks are held-out as “test” 

tasks

→ Measures non-parametric generalization
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Results Discussion & Takeaways
● Single-Task RL is still brittle

○ Unconvincing PPO/SAC results
○ Finding one stable set of hyperparameters with 

reasonable compute remains hard

● Multi-Task RL is still difficult to get working
○ Algorithms are unstable enough that positive transfer 

is difficult empirically
○ Overlap with Goal-Conditioned RL gives us more 

tools for improvement

● Meta-RL can extend beyond toy gym tasks
○ Revival of RL^2 
○ Are 45 tasks enough to expect non-parametric 

generalization?
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Future Work and Open Problems

● Scaling beyond 50 tasks will probably require sparse reward functions
● Realistic observation spaces (images vs. sensor states)
● Meta-Learning relies heavily on automatic resets

An example of image-based multi-task learning with image 
observations and a reset trick [23]:
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