

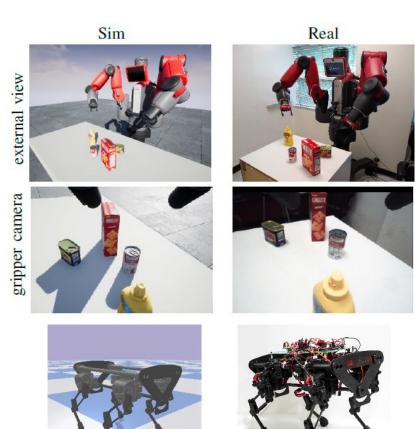
Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

Presenter: Jake Grigsby

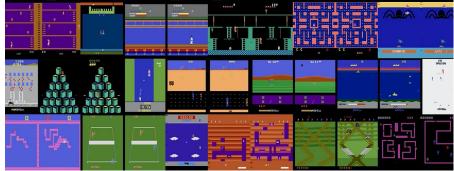
11/1/2022

Motivation: RL Generalization

- Training Deep RL algorithms takes millions of timesteps per task
- > We want to use one policy to solve **multiple tasks**
- We also want to be able to adapt to slight changes in the environment
 - Key special-case in robotics: sim2real transfer [1]
 - Different degrees of the same core problem

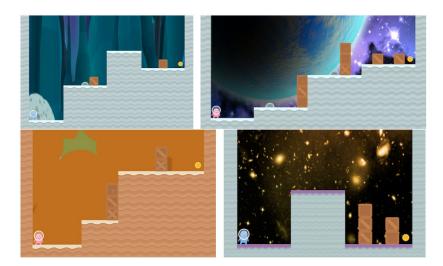


- > "Generalization" initially focused on applying one algorithm to multiple tasks independently
 - E.g, 1 set of DQN hyperparameters, 57 Atari games [2] [3]

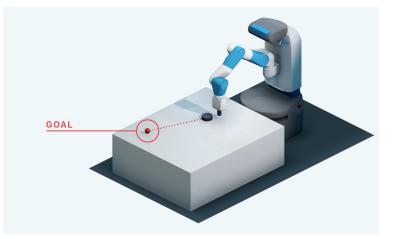


> Atari games are too distinct for positive transfer \rightarrow instead try different levels of the same game [4]

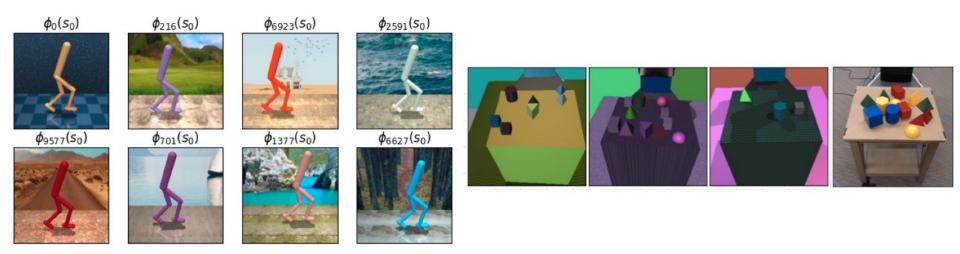
- > Supervised learning sometimes needs millions of images or text fragments
- How many different "levels"/tasks does RL need to generalize?
 - We can find out by generating near-infinite variations of the same environment [5] [6]



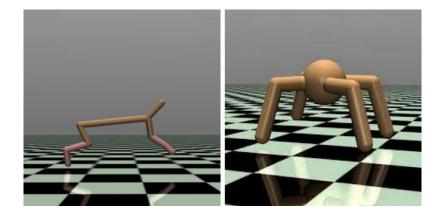
- > Supervised learning sometimes needs millions of images or text fragments
- How many different "levels"/tasks does RL need to generalize?
 - We can find out by generating near-infinite variations of the same environment
 - Robotics examples: manipulation environments with random object locations [7]



- > Procedural generation for diverse task collections is a common theme [8]
 - We've seen one example already with dexterous hand sim2real [9]
 - Especially for visual generalization, where graphics are easily randomized [10] [11] [12]



- > Examples so far have leaned towards easily visualized differences
- > But variations in reward functions, goals, and dynamics are also studied [13]
 - Especially reward function changes in classic gym envs [14]



The Spectrum of RL Generalization

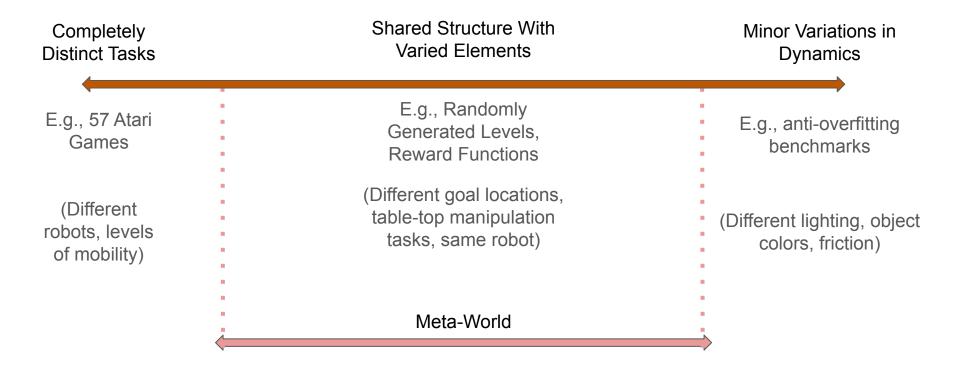
Completely Distinct Tasks Shared Structure With Varied Elements

Minor Variations in Dynamics

The Spectrum of RL Generalization

Completely Distinct Tasks	Shared Structure With Varied Elements	Minor Variations in Dynamics
E.g., 57 Atari Games	E.g., Randomly Generated Levels, Reward Functions	E.g., anti-overfitting benchmarks
(Different robots, levels of mobility)	(Different goal locations, table-top manipulation tasks, same robot)	(Different lighting, object colors, friction)

The Spectrum of RL Generalization



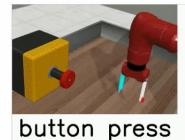
Meta-World provides a suite of table-top manipulation tasks with the same robot arm

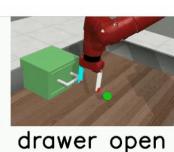
 \rightarrow (same state and action space)

The range of tasks is formalized by the task distribution $p(\mathcal{T})$, where each task \mathcal{T} is defined by its:

- reward function $R_T(s, a)$
- Initial state s₀
- Goal g

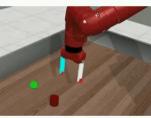
The set of 50 distinct manipulation tasks creates **non-parametric** variation







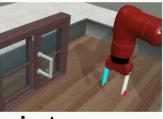
peg insert side



push

drawer close

reach



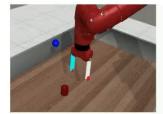
window open

window close

Meta-World creates parametric variation by sampling from a distribution over initial states ($p_T(s_0)$) and goals ($p_T(g)$)

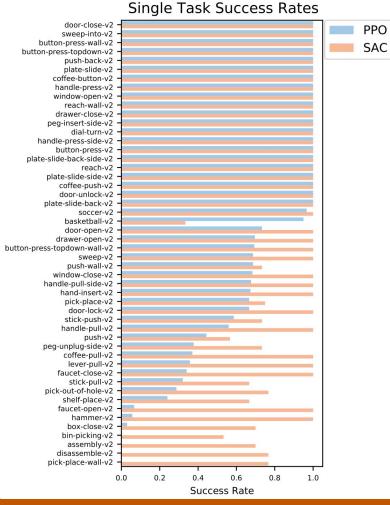
Goal Location 2

Goal Location 3



pick place Goal Location N

- > First step is to show every task is solvable individually
 - Requires dense (hand-engineered) reward function
 - Reward scale varies by task so we compare based on binary "success" metric
- Single-Task SAC and PPO
 - Train on parametric variation with goal provided
 - Can succeed on at least 50% of goals per task
 - Slightly inconsistent vocab here



Multi-Task vs. Meta-Learning

Multi-Task Learning: tell the policy which task we are solving

- one-hot encoding of non-parametric task ID
- > array of parametric goal information
- ➤ connections to goal-conditioned RL [15]

Multi-Task vs. Meta-Learning

Meta-Learning: the policy needs to *discover* which task we are solving

Two main categories of approaches:

- 1. Optimization-based methods quickly <u>finetune</u> on the current task with <u>gradient</u> <u>updates</u>
 - a. MAML [16] and its many variants
- 2. *Context-based* methods infer the current task by remembering all the past <u>attempts</u>

Context-Based Meta-Learning

Informally: figure out the task by looking at everything we've tried and all the rewards we've received

→ See what worked and what didn't and avoid past mistakes

Full task trajectory (ignoring episode resets) up until time t:

$$\tau_{:t} \coloneqq (s_0, a_0, r_0, d_0, s_1, a_1, r_1, d_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, d_{t-1}, s_t)$$

Learn a trajectory-conditioned policy to maximize multi-episode return

$$\pi(a \mid s) \to \pi(a \mid \tau_{:t})$$

Context-Based Meta-Learning

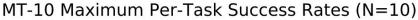
- Simplest and earliest implementations are RL^2 [17] and L2RL [18]
 - On-policy policy gradient <u>RNNs that roll through episode boundaries</u>
- More complex variants include PEARL [19] and variBAD [20]
 - Better ways to drive exploration and model how uncertain we are of the current task
 - For more formal reading: check out connections between Meta-Learning and CMDPs / BAMDPs [21][22]
- In general, there is less activity here than gradient-based MAML variants

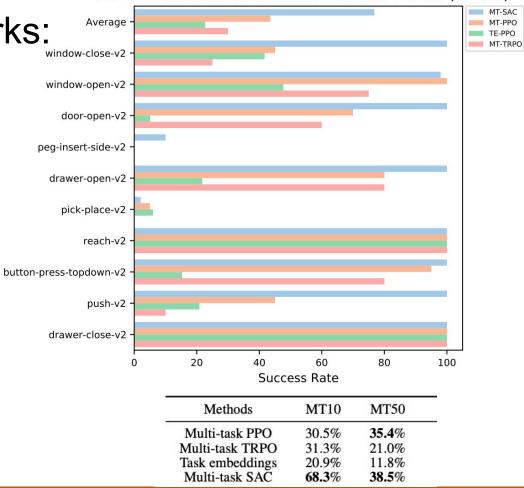
Meta-World Benchmarks: Multi-Task

Multi-Task (MT): MT1, MT10, MT50

Use standard RL algorithms to train policies that can see the one-hot task ID and goal array

Tasks are sampled from 1 manipulation task (MT1), or 10 (MT10), etc.





Meta-World Benchmarks: Meta-Learning

Meta-Learning (ML): ML1, ML10, ML45

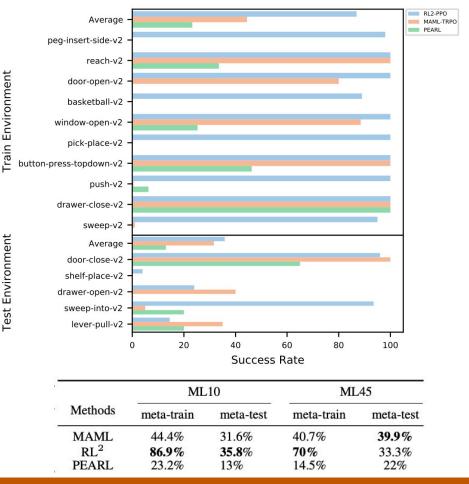
Use <u>meta</u>-RL algorithms to train policies that <u>cannot</u> see the one-hot task ID or goal array

Tasks are sampled from 1 manipulation task (ML1), or 10 (ML10), or 45 (ML45)

5 manipulation tasks are held-out as "test" tasks

 \rightarrow Measures non-parametric generalization

ML-10 Maximum Per-Task Success Rates (N=10)



Results Discussion & Takeaways

- Single-Task RL is still brittle
 - Unconvincing PPO/SAC results
 - Finding one stable set of hyperparameters with reasonable compute remains hard
- Multi-Task RL is still difficult to get working
 - Algorithms are unstable enough that positive transfer is difficult empirically
 - Overlap with Goal-Conditioned RL gives us more tools for improvement
- Meta-RL can extend beyond toy gym tasks
 - Revival of RL^2
 - Are 45 tasks enough to expect non-parametric generalization?

		ML10		ML45	
Methods	meta-train	meta-test	meta-train	meta-test	
-	MAML	44.4%	31.6%	40.7%	39.9%
22	RL ² PEARL	86.9% 23.2%	35.8 % 13%	70% 14.5%	33.3% 22%

Methods	MT10	MT50
Multi-task PPO	30.5%	35.4%
Multi-task TRPO	31.3%	21.0%
Task embeddings	20.9%	11.8%
Multi-task SAC	68.3%	38.5%

Future Work and Open Problems

- Scaling beyond 50 tasks will probably require sparse reward functions
- Realistic observation spaces (images vs. sensor states)
- Meta-Learning relies heavily on automatic resets

An example of image-based multi-task learning with image observations and a reset trick [23]:

References I

[1] Iqbal et al., 2020, Toward Sim-to-Real Directional Semantic Grasping
[2] Mnih et al., 2015, Human-level control through deep reinforcement
learning

[3] Machado et al., 2017, Revisiting the Arcade Learning Environment:
Evaluation Protocols and Open Problems for General Agents
[4] Nichol et al., 2018, Gotta Learn Fast: A New Benchmark for Generalization in RL

[5] Cobbe et al., 2018, Quantifying Generalization in Reinforcement Learning
 [6] Cobbe et al., 2019, Leveraging Procedural Generation to Benchmark
 Reinforcement Learning

References II

[7] Andrychowicz et al., 2017, Hindsight Experience Replay
 [8] Kirk et al., 2021, A Survey of Generalisation in Deep Reinforcement
 Learning

[9] OpenAl et al., 2018, Learning Dexterous In-Hand Manipulation

[10] Zhang et al., 2018, Natural Environment Benchmarks for Reinforcement Learning

[11] Grigsby and Qi, 2020, Measuring Visual Generalization in Continuous Control from Pixels

[12] Tobin et al., 2017, **Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World**

References III

[13] Zhao et al., 2019, **Investigating Generalisation in Continuous Deep Reinforcement Learning**

[14] Finn, 2018, Learning to Learn with Gradients

[15] Liu et al., 2022, Goal-Conditioned Reinforcement Learning: Problems and Solutions

[16] Finn et al., 2017, Model-Agnostic Meta-Learning for Fast Adaptation of

Deep Networks

[17] Duan et al., 2016, RL^2: Fast Reinforcement Learning via Slow

Reinforcement Learning

[18] Wang et al., 2016, Learning to reinforcement learn

References IV

[19] Rakelly et al., 2019, Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables

[20] Zintgraf et al., 2019, VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning

[21] Ghosh et al., 2021, Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability

[22] Zintgraf, 2022, Fast adaptation via meta reinforcement learning
[23] Kalashnikov et al., 2021, MT-Opt: Continuous Multi-Task Robotic
Reinforcement Learning at Scale